
gradiant GENERALIZED PRESENTATION ATTACK DETECTION A FACE ANTI-SPOOFING EVALUATION PROPOSAL

Universida_{de}Vigo

Universidad de Alcalá Artur Costa-Pazo^{1,2}, David Jimenez-Cabello¹, Esteban Vazquez-Fernandez¹, José L. Alba-Castro², Roberto J. López-Sastre³ {acosta, djcabello, evazquez}@gradiant.org, jalbla@gts.uvigo.es, robertoj.lopez@uah.es ¹GRADIANT (SPAIN), ²University of Vigo[,](SPAIN), ³University of Alcalá (SPAIN)

Main Contributions

• We provide the **largest aggregated dataset** with a common categorization in two levels to represent four key aspects in anti-spoofing: attacks, lighting, capture devices and resolution.

• We release an open-source evaluation framework, introducing an unified benchmark for GPAD.

• We provide an evaluation of state-of-the-art methods in the proposed benchmark. We demonstrate the limitation of current dataset evaluation procedures (generalization, cross-domain evaluation, etc.), while showing the benefits of the proposed unified framework. All the experiments will be reproducible.

 Using the novel evaluation tool, we introduce two novel protocols for the GPAD problem.

Reproducible Research

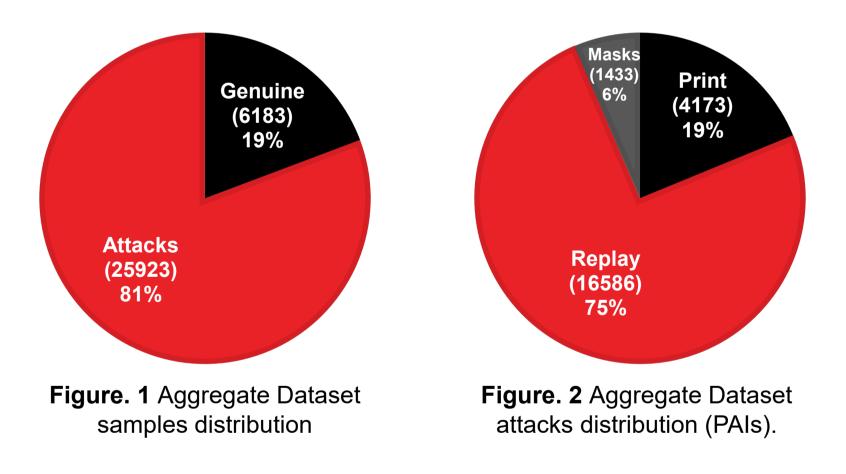
https://github.com/Gradiant/bob.paper.icb2019.gradgpad

GRAD-GPAD Framework

Generalization Representation over Aggregated Datasets for Generalized Presentation Attack Detection

Aggregate Dataset

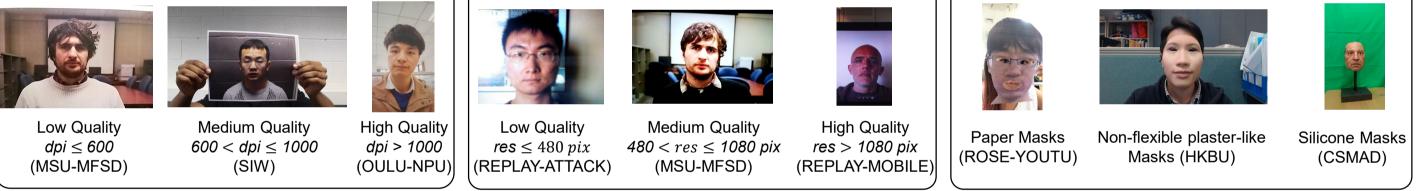
Dataset	Year	Num Identities	Num samples real attack	Spoof atacks
CASIA-FASD	2012	50	150 450	Print, Replay
REPLAY-ATTACK	2012	50	200 1000	Print, 2 Replay
3DMAD	2013	17	170 85	Mask (rigid)
MSU-MFSD	2015	35	110 330	Print, 2 Replay
UVAD	2015	404	808 16268	7 Replay
REPLAY-MOBILE	2016	40	390 640	Print, Replay
HKBU (v1)	2016	8	70 40	Mask (rigid)
OULU-NPU	2017	55	1980 3960	2 Print, 2 Replay
ROSE-YOUTU	2018	20	897 2600	2 Print, 2 Replay, 2 Mask(paper)
SIW	2018	165	1320 330	2 Replay, 4 Replay
CSMAD	2018	14	88 220	Print, Mask (silicone)


Common Taxonomy

Print-based PAIs

Replay-based PAIs

Mask-based PAIs


Table. 1 List of existing databases for anti-spoofing based on videos and their main characteristics.

Protocols

Extended classical Protocols

	Grandtes	t	Cross-Dataset				
All Train All Train		All Train	All but one dataset	Selected dataset	Selected dataset		
Train -	→ Devel -	➡ Test	Train -	→ Devel -	→ Test		

Figure. 3 Sample of Common PAIs (Presentation Attack Instruments).

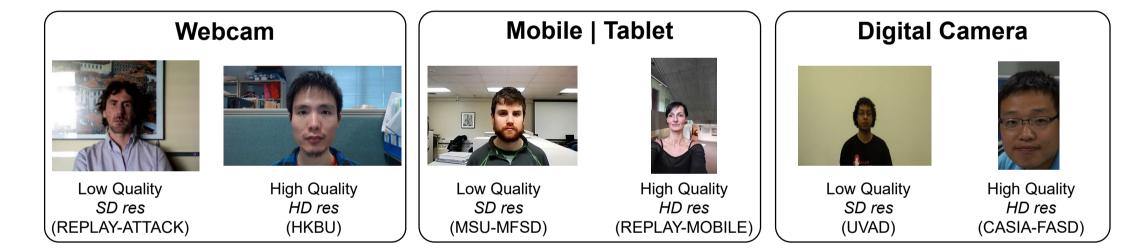


Figure. 4 Samples of Common Capture Devices.

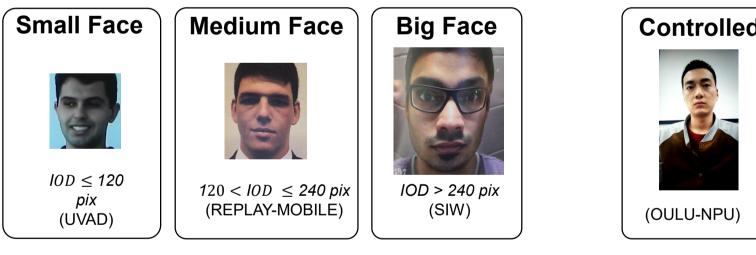
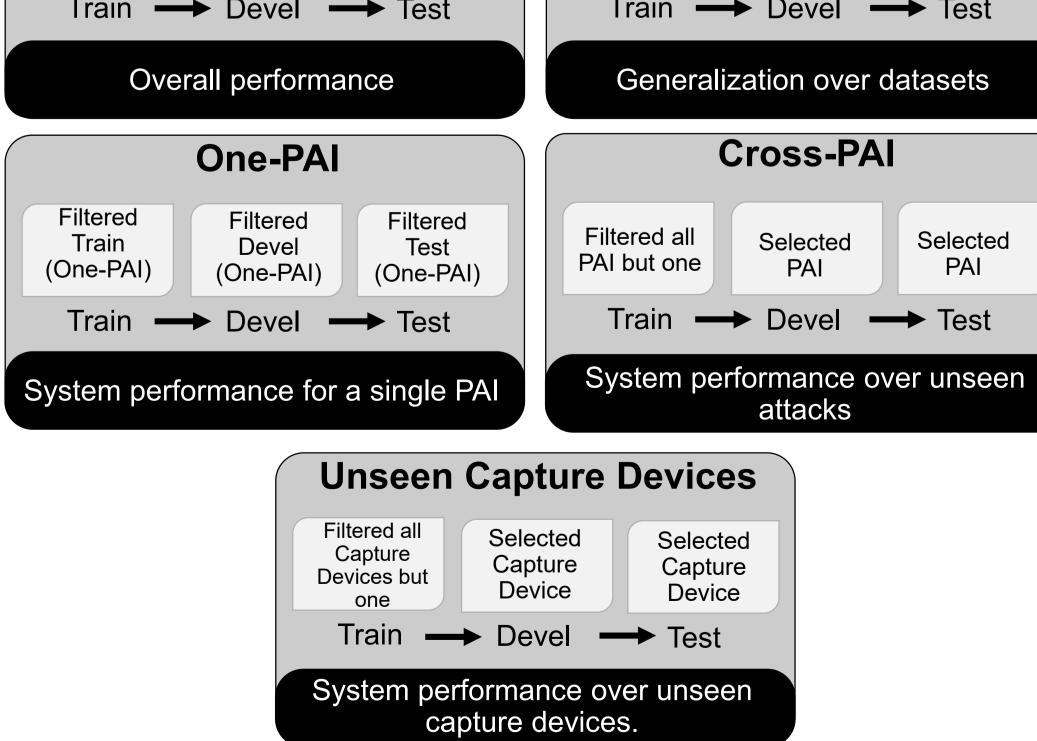


Figure. 5 Samples of Common Face Resolution. IOD stands for Interocular Distance.


Figure. 6 Samples of Common Lighting.

Experiments

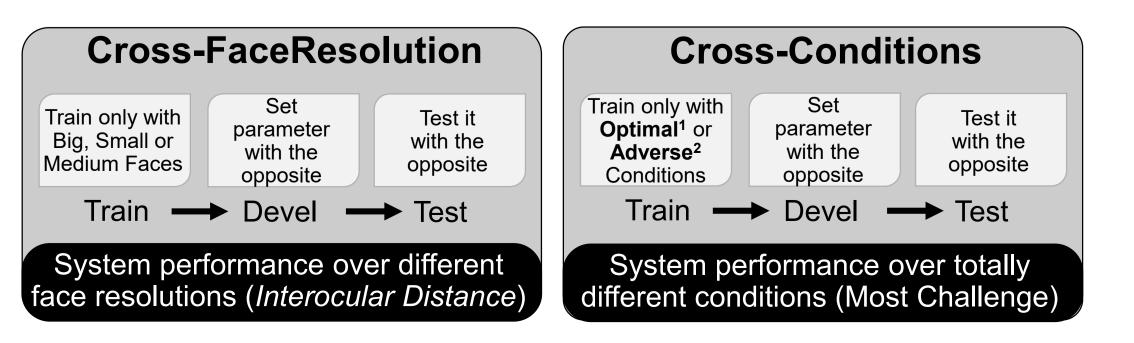

Baseline	HTER (%)	ACER (%)	APCER (%)	BPCER (%)
Quality-Based [1]	17.03	25.25	34.09	16.41
Color-Based [2]	6.33	10.22	13.86	6.58

Table. 2 Results for Grandtest protocol.

Baseline	Cross-Device Protocol	HTER (%)	ACER (%)	APCER (%)	BPCER (%)
Quality-	DigitalCamera-Test	24.85	52.27	86.67	17.89
Based [1]	Webcam-Test	28.55	53.57	29.52	47.62
	MobileTablet-Test	21.11	25.76	29.33	22.19
Color- Based [2]	DigitalCamera-Test	7.42	16.26	26.76	5.75
	Webcam-Test	12.16	31.90	48.98	14.83
	MobileTablet-Test	9.08	12.30	15.07	9.54

Novel Protocols

¹ **Optimal conditions:** high quality capture devices, low and medium quality PAIs, paper masks and both controlled and no info lighting conditions.

² Adverse conditions: low quality capture devices, high quality PAIs, silicon and non-flexible plaster-like mask, and adverse lighting conditions

Tested on	HTER (%)	ACER (%)	APCER (%)	BPCER (%)	Tested on	HTER (%)	ACER (%)	APCER (%)	BPCER (%)
CASIA-FASD	41.57	48.98	81.11	16.85	CASIA-FASD	15.45	16.75	17.78	15.73
REPLAY- ATTACK	27.61	34.06	33.96	34.17	REPLAY- ATTACK	25.11	33.35	31.25	35.44
3DMAD	29.00	29.00	0.00	58.00	3DMAD	0.00	0.00	0.00	0.00
MSU-MFSD	31.11	46.66	46.66	46.66	MSU-MFSD	17.78	35.00	56.66	13.33
REPLAY- MOBILE	26.89	28.19	34.37	22.02	REPLAY- MOBILE	18.30	22.99	23.96	22.02
HKBU	45.00	45.00	90.0	0.00	HKBU	0.00	0.00	0.00	0.00
OULU-NPU	34.68	41.11	75.27	6.94	OULU-NPU	34.27	37.78	72.22	3.33
ROSE-YOUTU	37.88	45.81	42.40	49.22	ROSE-YOUTU	27.42	34.78	25.25	44.32
SIW	31.97	48.40	53.07	43.74	SIW	9.90	22.06	30.43	13.69
CSMAD	40.51	40.51	10.20	70.83	CSMAD	40.05	40.05	55.10	

a) Result Using Quality-Based [1] face-PAD.

b) Result Using Color-Based [2] face-PAD.

Table. 4 Results for Cross-Dataset protocol

Baseline	Cross- FaceResolution Protocol	HTER (%)	ACER (%)	APCER (%)	BPCER (%)	Baseline	Cross- Conditions Protocol	HTER (%)	ACER (%)	APCER (%)	BPCER (%)
Quality-	LargeFaces-Test	24.48	51.86	86.21	17.52	Quality-	Adverse-Test	36.62	40.48	72.50	8.46
Based [1]	SmallFaces-Test	29.98	48.79	50.00	47.58	Based [1]	Optimal-Test	45.50	66.06	96.67	35.46
Color-	LargeFaces-Test	8.33	15.81	27.50	4.12	Color-	Adverse-Test	41.13	45.43	86.25	4.61
Based [2]	SmallFaces-Test	25.47	29.62	12.20	47.04	Based [2]	Optimal-Test	34.37	55.12	93.33	16.91

Table. 5 Results for Cross-FaceResolution protocol

Table. 6 Results for Cross-Conditions protocol

References:

[1] Z. Boulkenafet et al. Face spoofing detection using colour texture analysis. IEEE Transactions on Information Forensics and Security (TIFS), 2016.

[2] O. Nikisins et al.. On effectiveness of anomaly detection approaches against unseen presentation attacks in face anti-spoofing. In ICB, 2018.