conv_cfg = dict(type="ConvWS")
norm_cfg = dict(type="GN", num_groups=32, requires_grad=True)
model = dict(
type="FasterRCNN",
pretrained="open-mmlab://jhu/resnet50_gn_ws",
backbone=dict(
type="ResNet",
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
norm_eval=True,
style="pytorch",
),
neck=dict(
type="FPN",
in_channels=[256, 512, 1024, 2048],
out_channels=256,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
num_outs=5,
),
rpn_head=dict(
type="RPNHead",
in_channels=256,
feat_channels=256,
anchor_generator=dict(
type="AnchorGenerator",
ratios=[0.5, 1.0, 2.0],
scales=[8],
strides=[4, 8, 16, 32, 64],
),
bbox_coder=dict(
type="DeltaXYWHBBoxCoder",
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[1.0, 1.0, 1.0, 1.0],
),
loss_cls=dict(type="CrossEntropyLoss", use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type="L1Loss", loss_weight=1.0),
),
roi_head=dict(
type="StandardRoIHead",
bbox_roi_extractor=dict(
type="SingleRoIExtractor",
roi_layer=dict(type="RoIAlign", out_size=7, sample_num=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32],
),
bbox_head=dict(
type="Shared4Conv1FCBBoxHead",
in_channels=256,
conv_out_channels=256,
fc_out_channels=1024,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
roi_feat_size=7,
num_classes={{cookiecutter.num_classes}},
bbox_coder=dict(
type="DeltaXYWHBBoxCoder",
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[0.1, 0.1, 0.2, 0.2],
),
reg_class_agnostic=False,
loss_cls=dict(type="CrossEntropyLoss", use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type="L1Loss", loss_weight=1.0),
),
),
)
train_cfg = dict(
rpn=dict(
assigner=dict(
type="MaxIoUAssigner",
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
match_low_quality=True,
ignore_iof_thr=-1,
),
sampler=dict(
type="RandomSampler",
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False,
),
allowed_border=0,
pos_weight=-1,
debug=False,
),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0,
),
rcnn=dict(
assigner=dict(
type="MaxIoUAssigner",
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
match_low_quality=False,
ignore_iof_thr=-1,
),
sampler=dict(
type="RandomSampler",
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True,
),
pos_weight=-1,
debug=False,
),
)
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0,
),
rcnn=dict(score_thr=0.05, nms=dict(type="nms", iou_thr=0.5), max_per_img=100),
)
load_from = "/media/VA/pretrained_weights/mmdet/mask_rcnn_r50_fpn_gn_ws-all_20_23_24e_coco_20200213-487d1283.pth"